Production and Characterisation of Cellulose and Nano- Crystalline Cellulose from Kenaf Core Wood

نویسندگان

  • Chi Hoong Chan
  • Chin Hua Chia
  • Sarani Zakaria
  • Ishak Ahmad
  • Alain Dufresne
چکیده

Natural fibers such as kenaf have been studied extensively as a reinforcing phase and received major attention recently due to their renewability, biodegradability, and high strength comparable to other synthetic fibers. In this study, nano-crystalline cellulose (NCC) was produced from kenaf core wood using the acid hydrolysis method. Kenaf core was alkali treated with a 4 wt% of sodium hydroxide solution and subsequently bleached using sodium chlorite in acidic buffer. The resulting white, bleached kenaf core was hydrolyzed in 64 wt% sulfuric acid (H2SO4) to obtain NCC. The resulting NCC suspension was characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) analysis, and scanning transmission electron microscope (STEM). Hydrolysis with highly concentrated H2SO4 further increased the crystallinity of bleached kenaf core cellulose and reduced the dimension of cellulose to nano scale. FTIR results showed that with each subsequent treatment, hemicellulose and lignin were removed, while the chemical functionalities of cellulose remained after the acid hydrolysis treatment. XRD peaks shown by bleached kenaf core were characteristic of cellulose I, which was reaffirmed by the DSC results. The diameters of NCC obtained from kenaf core were found to be in the range of 8.5 to 25.5 nm with an average aspect ratio of 27.8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper

Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments.  Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...

متن کامل

The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper

Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments.  Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...

متن کامل

Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and recalcitrant cellulose (RC)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012